
Situated Objects

Patrick Dubroy
Y Combinator Research, USA

pat.dubroy@ycr.org

Abstract
We explore a form of object-oriented messaging in the context
of an ownership tree, where owners can respond to messages
on behalf of their transitively-owned objects. If all access to
an object is mediated by its owner (owners-as-accessors),
then we call such an object a situated object. We discuss how
situated objects can offer another perspective on the perennial
separation-of-concerns problem in object-oriented programs.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-Oriented Programming

1. Introduction
Since Harrison and Ossher’s landmark “critique of pure
objects” [3], many different solutions for modelling the
extrinsic properties of objects have been proposed [5, 4, 7].
We explore another solution to this problem in the context of
a dynamic ownership system.

1.1 Motivation
As an example of the need to model extrinsic properties
of objects, we use a vector drawing application. In such
an application, we might have a Document object which
contains a ShapeList, which in turn contains Shapes. In the
user interface, a shape may be selected or not. Selection is
an inherently contextual property; a “pure” Rectangle object
shouldn’t need to deal with such an application-level concern.

However, if another component has a reference to a shape,
it is convenient to be able to directly ask the shape if it is
selected. A typical solution is to implement an isSelected

method for shapes which simply forwards the message to the
shape’s container. But if there are many kinds of container
(e.g., Group, Layer, etc.), they may all need to be modified to
handle isSelected.

If the system is built using third-party classes, it may not
be possible to modify them directly, but subclassing can be

[Copyright notice will appear here once ’preprint’ option is removed.]

Ownership 
Ownership context 
Allowed reference 
Forbidden reference✘

✘

Figure 1. Owners-as-dominators

used instead. Unfortunately, in most languages this requires
changing or wrapping any existing methods that instantiate
these classes, to ensure that they instantiate the appropriate
subclass instead.

1.2 Ownership Systems
The model described above is an example of a part-whole
hierarchy — a document is composed of a shape list, a shape
list is composed of shapes, etc. In a part-whole hierarchy, an
object can be said to “own” the objects it is composed of.

Various ownership systems have been proposed [1] to
make it possible to formalize and enforce the notion of
ownership. In these systems, an object has at most one owner;
together, the objects form an ownership tree. The details and
implications of ownership vary considerably across systems;
in an owners-as-dominators model [2] (Figure 1), the type
system ensures that all paths to an object from the root of the
system pass through that object’s owner. By contrast, in an
owners-as-accessors discipline [6], there are no restrictions
on references between objects, but all accesses (i.e., message
sends) to an object must be made via its owner.

2. Situated Objects
Building on the notion of owners-as-accessors, we propose
the following: instead of outright forbidding message sends
that bypass an object’s owner, what if such messages are
allowed, but transparently dispatched down the receiver’s
ownership chain?

Submitted to NOOL’16, Amsterdam, Netherlands 1 2016/10/21



A naive implementation would be similar to the hierarchi-
cal event dispatch found in many UI toolkits: beginning at
the receiver, we walk the owner links, recording each one in
a list. When the root owner is reached, we use the list to dis-
patch the message back down the ownership chain, beginning
at the root owner.

At any point in the dispatching process, we allow an owner
to abort the hierarchical dispatch and respond directly on be-
half of the receiver, much like how a standard OO method
can choose to whether or not to invoke the superclass imple-
mentation. If all access to an owned object goes through this
dispatch mechanism, we call such an object a situated ob-
ject, because its observed behaviour comes from its intrinsic
behaviour combined with its position in the ownership tree.

2.1 Prototype
To evaluate this idea, we have been experimenting with
a JavaScript library for defining and instantiating situated
objects. The library manages object ownership and message
dispatch, but does not enforce any restrictions based on the
ownership tree. (Our primary interest is in ownership-directed
messaging — not the details of a dynamic ownership system.)

2.1.1 Implementing the Selection Protocol
With Situated Objects, we only need to respond to isSelected
and setSelected in the object that manages selection (in
our case, the ShapeList). An external component can still
send the isSelected message to a shape, but — without
the knowledge of either the sender or the shape object — the
method implementation comes from the ShapeList.

Here is how the ShapeList might be implemented1:

var ShapeList = situated.createClass({

parts: {

selIdx: -1,

shapes: []

},

'shapes/:idx/isSelected'(idx) {

return this.selIdx === idx;

},

'shapes/:idx/setSelected'(idx, val) {

if (val) {

this.selIdx = idx;

} else {

var shape = this.at(`shapes/${idx}`);
if (shape.isSelected()) {

this.selIdx = -1;

}

}

},

...

});

1 This example uses some features of the ECMAScript® 2015 (also known
as ES6) syntax — specifically, method definitions and template literals.

To create a new situated object class, the programmer
passes in an object which maps from message patterns to
methods. When a situated object is dispatching a message,
it tries to match the message against each of its patterns. If
one matches, it executes that method. If not, the message is
dispatched down to the appropriate child, with the first path
component stripped off.

In this manner, any shape in the ShapeList is automatically
becomes a “situated” shape that can respond to isSelected

and setSelected. For example:

var shape = shapeList.at('shapes/0');
shape.setSelected(true);

Since all messages to the shape will go through the
ShapeList (even messages from the shape itself) this message
routing effectively changes the interface of the shapes.

3. Discussion
This is very early work that we think could greatly benefit
from the feedback of NOOL attendees. Among the questions
we have yet to answer are:

• How does owner-based dispatch interact with traditional
inheritance-based method dispatch? Can we combine
them in a sensible way?

• What kinds of message patterns should we support?
• Are there useful connections to the message patterns used

in pub/sub architectures?

References
[1] D. Clarke, J. Östlund, I. Sergey, and T. Wrigstad.

Ownership types: A survey. In Aliasing in
Object-Oriented Programming. Types, Analysis and
Verification, pages 15–58. Springer, 2013.

[2] D. G. Clarke, J. M. Potter, and J. Noble. Ownership
types for flexible alias protection. In Proc. OOPSLA,
pages 48–64. ACM, 1998.

[3] W. Harrison and H. Ossher. Subject-oriented
Programming: A Critique of Pure Objects. ACM, 1993.

[4] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3), 2008. URL http://www.jot.fm/

issues/issue_2008_03/article4/.
[5] G. Kiczales et al. Aspect-oriented programming. In Proc.

ECOOP, pages 220–242. Springer, 1997.
[6] J. Noble and A. Potanin. On owners-as-accessors. In

Proc. IWACO, 2014.
[7] A. Warth, M. Stanojević, and T. Millstein. Statically

scoped object adaptation with expanders. In Proc.
OOPSLA, pages 37–56. ACM, 2006.

Submitted to NOOL’16, Amsterdam, Netherlands 2 2016/10/21

http://www.jot.fm/issues/issue_2008_03/article4/
http://www.jot.fm/issues/issue_2008_03/article4/

	Introduction
	Motivation
	Ownership Systems

	Situated Objects
	Prototype
	Implementing the Selection Protocol


	Discussion

